Editors’ Highlights are summaries of recent papers by AGU’s journal editors.
Source: Water Resources Research
Rivers can split into branches, a phenomenon called bifurcation. Typically, the branches return again to the main river or the same floodplain after some distance downstream from the bifurcation, such as around an island, in a braided river, or in a river delta. Some bifurcations, however, are different, branching off and never returning, and seemingly defying conventions of hydrology, the science of Earth’s water and especially its movement in relation to land.
In their new article, Sowby and Siegel [2025] describe such curious bifurcations of rivers and lakes in North and South America. Some rivers diverge rather than converge; some rivers flow in two directions; some lakes have not one but two outlets; and some watersheds have strange boundaries. Some of these irregular water bodies are remote and wild while others are developed and controlled; some are streams small enough to step over and others are lakes over 100 kilometers long; and some are protected in national parks, but others are not. Their irregularities illustrate various aspects and manifestations of the complexity of Earth’s water system on land and how much we have still to learn about it.
These irregularities raise interesting questions: How should the watershed boundaries of such water bodies be defined on maps? Whose water is it before or after it bifurcates? If contaminated, who is responsible? Should flows in a bifurcated river be manually controlled, or left to nature? How can such interesting hydrological features be preserved and studied? The authors explore the natural settings and the societal uses, impacts, and management of these unusual bodies of water on land, along with the implications for our ability to quantitatively model and predict their characteristics and involved water system interactions.
Citation: Sowby, R. B., & Siegel, A. C. (2025). Unusual drainages of the Americas. Water Resources Research, 61, e2024WR039824. https://doi.org/10.1029/2024WR039824
—Georgia Destouni, Editor-in-Chief, Water Resources Research